ON THE INTERCHANGE OF LIMIT AND LEBESGUE INTEGRAL FOR A SEQUENCE OF FUNCTIONS*

BY

T. H. HILDEBRANDT

R. L. Jeffery in a paper on The integrability of a sequence of functions \dagger has given a number of necessary and sufficient conditions for $\lim_n \int_E f_n = \int_E F$, where f_n and F are summable on the measurable set E and $\lim_n f_n = F$ on E. The object of this note is to give an additional condition for the validity of this interchange, embodied in the

THEOREM. If $U(n, \delta)$ is the least upper bound, and $L(n, \delta)$ is the greatest lower bound of $\int_{\epsilon} f_n$ for all measurable subsets ϵ of E for which $m\epsilon \leq \delta$, then a necessary and sufficient condition that $\lim_{n} \int f_n = \int F$ on E, is that

$$\lim_{\delta\to 0} \lim_{n\to\infty} \left[U(n,\delta) + L(n,\delta) \right] = 0.$$

We are using the notation $\lim_{\delta} \lim_{n}$ in the standard sense of the common value of $\lim_{\delta} \underline{\lim}_{n}$ and $\lim_{\delta} \overline{\lim}_{n}$. In (ϵ, δ) form the condition of the theorem is equivalent to the following: \ddagger For every $\epsilon > 0$ there exists a δ_{ϵ} such that for every $\delta \leq \delta_{\epsilon}$, there exists an $n_{\delta \epsilon}$ such that if $n \geq n_{\delta \epsilon}$, then $|U(n, \delta)| \leq \epsilon$.

We establish the equivalence of our condition with the necessary and sufficient condition I of Jeffery, viz.

$$\lim_{l\to\infty}\int_{C(l,n)}f_n=0 \qquad (n\geq l)$$

where $C(l, \eta)$ is the complement relative to E of the set for which

$$|f_n - f| \leq \eta$$

for every $n \ge l$.

By the definition of $U(n, \delta)$, for every ϵ and δ , there exists a subset e of E of measure less than δ such that

$$U(n, \delta) - \epsilon \leq \int_{\epsilon} f_n \leq U(n, \delta).$$

Since $U(n, \delta) \ge 0$, we can obviously assume that $f_n \ge 0$ on e. Now for any l and η

^{*} Presented to the Society, December 31, 1930; received by the editors December 1, 1930.

[†] Cf. the present number of these Transactions.

[‡] Cf., for instance, Hildebrandt, Note on interchange of limits, Bulletin of the American Mathematical Society, vol. 34 (1928), p. 80.

$$\left| \int_{e} f_n - \int_{eC(l,\eta)} f_n \right| \leq \int_{e-eC(l,\eta)} \left| f_n - F \right| + \int_{e-eC(l,\eta)} \left| F \right|.$$

As a consequence if we take δ so that $\delta \eta \le \epsilon/2$ and so that, for $me \le \delta$, it is true that $\int_{\epsilon} |F| < \epsilon/2$, then provided $n \ge l$

$$\left| \int_{a} f_{n} - \int_{aC(l,n)} f_{n} \right| \leq \epsilon.$$

Let C^+ be the subset of $C(l, \eta)$ for which $f_n \ge 0$, and C^- the set for which $f_n < 0$. If then l be chosen so that $mC(l, \eta) \le \delta$, and $n \ge l$, then

$$U(n, \delta) - 2\epsilon \leq \int_{eC(l, n)} f_n = \int_{eC} f_n \leq \int_{C} f_n \leq U(n, \delta).$$

In a similar way we show that

$$L(n, \delta) \leq \int_{C_n} f_n \leq L(n, \delta) + 2\epsilon.$$

Hence if $\delta \leq \delta_{\epsilon}$, and $l \geq l_{\delta \epsilon}$, with $n \geq l$, we have

$$\left| \int_{C(I,\delta)} f_n - \left[U(n,\delta) + L(n,\delta) \right] \right| \leq 2\epsilon.$$

From this statement follows the equivalence of the conditions

$$\lim_{l\to\infty}\int_{C(l,\eta)}f_n=0\ (n\geqq l)\ \text{and}\ \lim_{\delta\to 0}\ \lim_{n\to\infty}\left[U(n,\delta)+L(n,\delta)\right]=0.$$

In so far as

$$\lim_{\delta \to 0} [U(n, \delta) + L(n, \delta)] = 0$$

for every n, our condition is equivalent to the equality of the iterated limits $\lim_{\delta} \lim_{n} \operatorname{and} \lim_{n} \lim_{\delta} \operatorname{of}$ the function $U(n, \delta) + L(n, \delta)$. Since the existence of the double limit $\lim_{(n,\delta) \to (\infty,0)}$ is sufficient for this interchange it follows that

$$\lim_{(n,\delta)\to(\infty,0)} [U(n,\delta) + L(n,\delta)] = 0$$

is also a sufficient condition for $\lim_n \int_E f_n = \int_E F$. That it is not necessary follows from the example given by Jeffery in §3.

If the integrals \iint_n are equicontinuous on E, i.e., if

$$\lim_{m \in \mathbb{R}^n} \int_{a} f_n = 0$$

uniformly in n, then obviously $\lim_{\delta} [|U(n, \delta)| + |L(n, \delta)|] = 0$, uniformly in n, U and L being even taken with respect to any subset e of E. Applying the standard theorem on interchange of iterated limits, we get at once the Vitali theorem for all subsets e of E. On the other hand, if all the functions f_n are positive on E, then $U(n, \delta)$ converges to zero monotonically in δ , while $L(n, \delta) = 0$. By applying the following generalization of Dini's Theorem:*

If $\lim_{n}\lim_{\delta}U(n, \delta)=\lim_{\delta}\lim_{n}U(n, \delta)$, and $U(n, \delta)$ is monotone in δ , then $\lim_{\delta}U(n, \delta)$ exists uniformly in n,

we find the well known result that when $f_n \ge 0$, equicontinuity of \iint_n is a necessary condition for $\lim_n \iint_n = \int_n F$ on E.

The theorem of this note is still valid if the convergence of f_n to f on E is convergence in a measure, \dagger i.e., if $D(n,\eta)$ is the set of points of E for which $|f_n-f| > \eta$ then $\lim_n mD(n,\eta) = 0$ for each η . Jeffery's Theorem must be altered so that the condition becomes

$$\lim_{n} \int_{D(n,\mathbf{x})} f_n = 0$$

for every η . The proofs for this more general case require only slight changes from those given.

University of Michigan, Ann Arbor, Mich.

^{*} Cf. Bulletin of the American Mathematical Society, vol. 21 (1914), p. 113.

[†] The possibility of this extension was suggested by L. M. Graves.